Mengeksplorasi Employee Satisfaction Karyawan pada Perusahaan Manufaktur: Peran Artificial Intelligence dan Training Effectiveness

Authors

  • Ayumia Hutasoit Universitas Pelita Bangsa
  • Lisnani Jamaludin Universitas Pelita Bangsa

DOI:

https://doi.org/10.59422/lbm.v3i04.1106

Keywords:

AI adoption, Training effectiveness, Employee satisfaction, Manufacturing industry, Transformasi digital

Abstract

Transformasi digital melalui adopsi Artificial Intelligence (AI) merupakan kebutuhan strategis bagi perusahaan manufaktur di era Industri 4.0. Penelitian ini bertujuan menganalisis pengaruh adopsi AI dan efektivitas pelatihan terhadap kepuasan karyawan. Dengan pendekatan kuantitatif dan desain cross-sectional, data dikumpulkan melalui kuesioner terstruktur dari karyawan perusahaan manufaktur di Indonesia dan dianalisis menggunakan Partial Least Square–Structural Equation Modeling (PLS-SEM). Hasil penelitian menunjukkan bahwa adopsi AI dan efektivitas pelatihan berpengaruh positif signifikan terhadap kepuasan karyawan. Temuan ini memberikan kontribusi pada literatur mengenai technologyacceptance dan human resource management, serta implikasi praktis bagi perusahaan dalam merancang strategi implementasi AI yang holistik dengan dukungan pelatihan komprehensif untuk meningkatkan penerimaan, kompetensi, dan kepuasan karyawan.

References

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899.

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., BLACK, W. C., & ANDERSON, R. E. (2019). Multivariate data analysis. Hampshire. Cengage Learning EMEA.

Judge, T. A., Thoresen, C. J., Bono, J. E., & Patton, G. K. (2001). The job satisfaction–job performance relationship: A qualitative and quantitative review. Psychological Bulletin, 127(3), 376.

Kirkpatrick, D., & Kirkpatrick, J. (2006). Evaluating training programs: The four levels. Berrett-Koehler Publishers.

Locke, E. A. (1976). The nature and causes of job satisfaction. Handbook of Industrial and Organizational Psychology.

Malik, A., Budhwar, P., Patel, C., & Srikanth, N. R. (2023). May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE. In Artificial intelligence and international HRM (pp. 83–113). Routledge.

Nguyen, M., Nham, T. P., Almugren, I., Gupta, B., & Dernóczi-Polyák, A. (2024). Psychological Mechanisms of Generative AI at Work: From Value Perceptions to Insider Status and Knowledge Sharing. Available at SSRN 5603453.

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.

Salas, E., Tannenbaum, S. I., Kraiger, K., & Smith-Jentsch, K. A. (2012). The science of training and development in organizations: What matters in practice. Psychological Science in the Public Interest, 13(2), 74–101.

Spector, P. E. (1985). Measurement of human service staff satisfaction: Development of the Job Satisfaction Survey. American Journal of Community Psychology, 13(6), 693.

Downloads

Published

2026-01-31